1-877-97ALGIX | info@algix.com
Showing posts from tagged with: Algae

Bioluminescence: Study uses algal cells to ‘shed light’ on sensing mechanical forces

Posted by Algix in Featured | 0 comments

11.08.15

Algae are known to congregate and bloom in massive numbers, covering patches of the ocean in thick red and brown blotches. Some of these “red tide” events create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteries remain on how such red tide blooms emerge, marine biologists are now making progress in decoding the mechanisms that trigger the effect of bioluminescence. Bioluminescense Algae 1 Marine biologist Michael Latz from Scripps Institution of Oceanography at UC San Diego has been studying bioluminescence for more than 30 years and is now zeroing in on the forces that flick the “on” switch for bioluminescencent flashes in single-celled algae known as dinoflagellates. Dinoflagellates employ bioluminescence as a defense mechanism. They use the bright flash to ward off potential predators as well as call attention to the predators of their predators as a type of alarm. Dinoflagellates are equipped with an extremely fast response to stimuli, with bioluminescence produced only 15 milliseconds after stimulation. In a study recently featured on the cover and blog of Biophysical Journal, Latz and former Scripps postdoctoral researcher Benoit Tesson employed a state-of-the-art laboratory instrument called an atomic force microscope to study the force sensitivity of dinoflagellates with unprecedented resolution. They set out to measure the exact forces that trigger light production inside dinoflagellate cells, setting the specifications for the atomic force microscope, in which a calibrated lever was used to apply precisely controlled forces on individual dinoflagellate cells. Such diligence paid off, as the results identified the force conditions that were required to trigger the light. Cells responded to a minimum force of seven micronewtons, which, according to U.S. Navy physicist Jim Rohr, who is familiar with the study, is equivalent to the “weight of an ant resting on your skin.” natureslight_web-Tesson and Latz Bioluminescence Most interesting, the researchers say, was that if the same level of force was applied slowly, there was no response. The difference was due to the mechanical properties of the cells. According to a model they developed, at low stimulation speed the resulting energy was dissipated while at high speed energy was able to build up. “It is like the difference between pushing and punching; for the same applied force, at high speeds a deformable material acts stiffer and the shock is stronger,” said Tesson. The results will contribute to the use of dinoflagellate bioluminescence as a tool in engineering and oceanography to visualize flows that are difficult to study otherwise. As Leonardo da Vinci used grass seeds to observe water flow more than 500 years ago, scientists today use bioluminescence to naturally “light up” flow forces associated with jet turbulence, breaking waves, and the swimming movements of dolphins. Knowing the precise trigger point of light emission will aid studies in which bioluminescence is used to study flow forces. “Cells are sophicated integrators of the forces in their environment,” said Latz. “With these results we further our understanding of how the structural properties of these organisms affect their force sensitivity, and how force sensing evolved, because the system appears to have conserved elements that are used in force sensing by higher organisms, including humans.” So the next time you see how the red tide sparkles at night, Latz says, you can think of the algae as little force-sensing machines. The U.S. Air Force Office of Scientific Research Multidisciplinary University Research Initiative, National Science Foundation, and UC San Diego Academic Senate funded the research. Use of the atomic force microscope was provided by Scripps Oceanography marine biologist Mark Hildebrand. Sources: http://news.algaeworld.org/2015/05/the-force-behind-bioluminescence-study-uses-algal-cells-to-shed-light-on-sensing-mechanical-forces/ http://www.cell.com/biophysj/abstract/S0006-3495(15)00169-1    

The streets were paved with algae: a greener material?

Posted by Algix in Featured | 0 comments

11.08.15

Algae for asphalt The process of surfacing a road isn’t complicated. Layers of asphalt, which is composed mostly of bitumen (a byproduct of crude oil distillation), are poured over an aggregate of crushed stone and sand; the asphalt acts as a glue, binding the mixture together to form asphalt concrete. Maintaining the roads, however, is a costly job. According to the Asphalt Industry Alliance it would cost more than £12bn to restore all road networks in England alone to a reasonable condition. Simon Hesp, a professor and chemical engineer at Queen’s University in Ontario, believes standard industry asphalt is not sustainable. “The problem with the composition is that it’s poorly controlled … it uses materials with poor performances,” he says. Hesp says the presence of certain oil residues lowers the quality of the concrete and is a key reason why roads are failing and many potholes need to be filled and cracks fixed. But there’s not just a maintenance cost. Asphalt, dependent as it is on the oil industry, is resource- and energy-intensive, which is why the race is on to develop a greener alternative. In Sydney an experiment is under way using printer toner waste blended with recycled oil to produce an environmentally friendly asphalt. And in the past few years there have been studies into the development of non-petroleum bioasphalts. At Washington State University researchers developed asphalt from cooking oil, and last year academics at Wageningen University in the Netherlands found that lignin – a natural substance found in plants and trees – is another suitable replacement for crude oil bitumen. Other investigations have looked into the use of soybean and canola oil (rapeseed oil) and coffee grounds. The WSU research, led by Haifang Wen and published at the end of 2013, concluded that the introduction of cooking oil can increase bioasphalt’s resistance to cracking . Wenn also claims it’s possible that, if commercialised, such bioasphalts could cost much less per tonne. The price of standard asphalt can fluctuate wildly as it’s dependent on the price of oil. Hesp isn’t convinced that cooking oil is the way forward. He says, like petroleum, over time it will cause roads to fail because of weak bonds. Bruno Bujoli, director of research at CNRS (Centre National de la Recherche Scientifique), agrees that the use of cooking oil “chemically modified to reach appropriate mechanical properties” could significantly affect quality. He also sounds a note of caution about food security, saying that asphalt based on vegetable oils could, if scaled up, affect food stocks Bujoli recently played a key role in developing a bioasphalt from microalgae. It uses a process known as hydrothermal liquefaction, which is used to convert waste biomass, including wood and sewage, into biocrude oil. The chemical composition of the microalgae bioasphalt differs from petroleum-derived asphalt, but initial tests have concluded that it also bears similar viscous properties and can bind aggregates together efficiently, as well as being able to cope with loads such as vehicles. How it will perform over time is yet to be determined. The findings were published in April. Green roads Bujoli suggests that microalgae – also known for its use in the production of cosmetic and textile dyes – is a greener and more appropriate solution than agricultural oils. The latter, he says, should be kept for food production. “The benefits of microalgae over other sources include low competition for arable land, high per hectare biomass yields and large harvesting turnovers. There is also the opportunity to recycle wastewater and carbon dioxide as a way of contributing to sustainable development,” he adds. It’s a neat idea, with an admirable green mission behind it, but how much of an impact can it really have? Technology such as this is still in its infancy, suggests Heather Dylla, director of sustainable engineering at the National Asphalt Pavement Association, a US trade organisation for the paving industry. “A lot of interesting work is being done in this area, looking at everything from algae, to swine waste, to byproducts from paper making. It’s worth exploring these alternatives, but we need to be sure they provide equivalent or improved engineering properties. We need to understand how they affect the recyclability of asphalt pavement mixtures,” she says. She points to the “unique” advantage of asphalt when it comes to recycling. “Not only are the aggregates, which make up about 95% of [asphalt concrete], put back to use, but the bitumen can also be reactivated and used again as the glue that holds a pavement together.” Microalgae could yet put the paving industry on the road to a greener future. For now though, there are plenty of challenges – from price to scalability – for Bujoli and his team to address if the bioasphalt is to be commercialised. “This is our research focus for the near future. Our current laboratory equipment works in a batch mode,” explains Bujoli. “Scaling up the process will require the design of a large-volume reactor that can operate under continuous flow conditions.” Read more at: http://www.theguardian.com/sustainable-business/2015/jun/08/from-oil-to-algae-eco-friendly-asphalt-could-be-the-route-to-greener-roads

Algae Has Bright Future in Animal Feeds

Posted by Algix in In the news | 0 comments

06.08.15

Algae seaweed as fish feed US - Scientists investigating the use of algal byproducts for feed have found that a novel algae meal derived from heterotrophic microalgae makes a suitable feed for cattle. Algae are organisms so environmentally adaptable that they flourish in wastelands, sewage and saline bodies of water. They can grow in high densities, in the dark and in the presence of high concentrations of nitrogen and phosphates. Harnessing the adaptive power of algae is a relatively new research field. Engineers across the country have developed algal biofuels, food additives and skincare products. Livestock scientists see its potential as a sustainable, high-energy feedstuff as well as a protein supplement. Amongst those scientists are Dr Megan Van Emon, Assistant Professor at Montana State University, Dr Daniel Loy, Professor of Animal Science at Iowa State University and Dr Stephanie Hansen, Assistant Professor at Iowa State University. Their paper, "Determining the preference, in vitro digestibility, in situ disappearance, and grower period performance of steers fed a novel algae meal derived from heterotrophic microalgae," is featured in June's issue of the Journal of Animal Science. Solazyme is a company that transforms algae into products like biofuel, cosmetics and cooking oil. They modify heterotrophic algae, which normally produce 5-10 per cent oil, to produce 80 per cent oil. The organisms are grown and processed in controlled media under very specific conditions. The oil is then harvested and incorporated into a variety of tailored products. The organization approached Dr Stephanie Hansen and her colleagues to assess the value of the remaining algal fraction, the dry cell wall that would otherwise be burned as waste. "We looked at the nutrient analysis of a blend of deoiled algae and soyhulls," said Dr Hansen. "Everyone thought that this could be a great ruminant feedstuff." While previous studies have studied pure algae supplements as sources of protein or docosahexaenoic acid (DHA), the current study is the first to feed a unique algae meal blend (ALG). The feedstuff (57 per cent microalgae) has slightly more fat content than corn, the same amount of protein and does not contain DHA. A preliminary experiment tested the DM digestibility of ALG compared with hay and soyhulls. Three more experiments took place (1) to determine if cattle would readily consume algae meal, (2) to determine the influence of DM disappearance of ALG and other feedstuffs and (3) to determine growth and DMI of ALG-fed grower calves. Four diets were fed to feedlot steers: a cracked corn control diet, and diets containing 15 per cent , 30 per cent and 45 per cent algae meal (CON, ALG15, ALG30 and ALG45, respectively.) The first two experiments involved three ruminally cannulated steers, and the third experiment involved 48 grower steers. In the grower study algae meal replaced wet corn gluten feed in the diet. The trials yielded a myriad of new information, notably:

  • Cattle readily consumed algae meal at all concentrations without sorting. (1)
  • ADG increased as ALG increased in the diet. (3)
  • DMI increased linearly as ALG concentrations increased in the diet. (3)
  • Finally, midpoint and final BW of steers were not affected by ALG. (3)
Dr Hansen says this initial collection of data translates to a promising future for algae meal. "We are currently working on FDA approval for the product," Dr Hansen said. "Hopefully by 2016, cattlemen will be able to start incorporating it into rations, especially if they can find it at the right price." The research team is working together with Solazyme to determine the financial value of algae meal. Dr Hansen expects the high-energy feedstuff to be priced competitively with corn. While most research initiatives are still in the experimental stages, continued studies on microalgae means commercial production of algal products is in the near future. DrHansen and her colleagues recently completed two sheep digestibility projects where algae meal directly replaced soyhulls and corn. Those projects will be presented at the ADSA-ASAS Joint Annual Meeting next month with M.S. candidate Rebecca Stokes as the lead author. "The sustainability of algae production is pretty promising," Dr Hansen said. "As we move into the next generation of cattle feeding and feedstuffs, it will be interesting to see where present and future versions of algae meal place themselves in the market." - See more at: http://www.thefishsite.com/fishnews/26076/algae-has-bright-future-in-animal-feeds/#sthash.nPNHnJFf.dpuf

 

Microalgae May Be New Natural Source for Antibiotics

Posted by Algix in In the news | 0 comments

10.07.15

Microalgae May Be New Natural Source for Antibiotics

Algal_production_facility_Craig_and_Elise   A recent article in Phycologia indicates that microalgae could provide alternative ways of producing antibiotics. This “untapped” source may prove to be highly valuable due to bacteria’s growing resistance to antibodies. Bacteria are resourceful, and their growing resistance to antibiotics has drawn attention and caused concern worldwide. There is an urgent need to find new sources of antibiotics. Among other options, scientists are turning to natural compounds from relatively unexplored microorganisms. The authors of an article published in the current issue of the journal Phycologia looked at one such group of microorganisms: microalgae. Researchers have investigated only a few species so far, but work with freshwater microalgae collected from remote, scientifically unexplored regions in northern Canada has produced several promising candidates for antibiotics. Microalgae are found everywhere: in lakes, rivers, garden ponds, even swimming pools. Yet little research has focused on them as potential antibiotics. Most antibiotics used today were created from bacteria, and the increasing resistance of the bacteria has prompted research into synthetic variations. The authors of the current article argue that microalgae may be another potential source of resistance-proof antibiotics. The authors give an overview of some of the research on microorganisms as antibiotics. They focus on the antibacterial activity of cyanobacteria and eukaryotic unicellular algae, collectively referred to as microalgae. Screening programs are being used to search for potentially useful strains of these microalgae. Researchers have found that microalgae can survive in and adapt to a range of harsh environmental conditions. Changes in temperature, light, pH, salinity, and the availability of nutrients have been extensively studied for their effects on microalgal growth. The adaptability of the microalgae suggests that they can develop resistance against a variety of stresses. Microalgae also produce compounds that can stand up to the activity of some of the bacteria that sicken people. When their environment changes, these microorganisms produce even more antibacterial compounds. This makes them a potential resource in manufacturing antibiotic drugs. Advances in technologies that can detect, purify, and identify the antibacterial compounds produced by microalgae only increase the possibilities for new antibiotics. The authors concluded that the range and variety of microalgae, as well as their antibacterial activity, could make them an important source of new antibiotics. Their ability to survive and adapt to a range of environments may be highly valuable to drug manufacturers. Still, there are no commercially available antibiotics from microalgae. More research is needed into these microorganisms to take advantage of this “untapped” source. Read more at: http://www.benzinga.com/pressreleases/15/06/p5626783/microalgae-may-be-new-natural-source-for-antibiotics http://modernfarmer.com/2015/04/algae-the-new-antibiotic/  

Algae Ink

Posted by Algix in In the news | 0 comments

22.06.15

DENVER - Living Ink Technologies has developed a patent-pending process to use algae as an ink that grows! "It's what grows in the ponds, the lakes, the oceans," said Living Ink Technologies co-founder and Colorado State University PhD candidate, Scott Fulbright. He says the green stuff could change the way we think about ink. "Nature provides a lot of bio-diversity for us to work with," he said. "I can send you a greeting card where some of the letters pop-up and then the next day some more letters pop-up. You have to guess what it says by the end of the week after the whole message grows." It's a message that only appears when the recipient hangs the card in the sunlight. Fulbright and his business partner, Steve Albers, won first prize at the University of Colorado Denver's Entrepreneurship Business Plan Competition. They hope to cash-in on the $8 billion greeting card industry and one day take on commercial printers with safe, renewable algae-derived ink. "It saves the consumer potentially a lot of money, and if it takes off it has the potential to revolutionize the ink industry," said Madhavan Parthasarathy, Associate Professor at the CU Denver Business School Living Ink will be launching a Kickstarter campaign mid-August for their stem algae coloring books. Living Ink Technology Read more at: http://www.thedenverchannel.com/thenow/algae-ink-from-living-ink-technologies-wins-top-prize-at-cu-denver-competition http://www.livinginktechnologies.com/

The streets were paved with algae: a greener material?

Posted by Algix in In the news | 0 comments

12.06.15

Algae for asphalt The process of surfacing a road isn’t complicated. Layers of asphalt, which is composed mostly of bitumen (a byproduct of crude oil distillation), are poured over an aggregate of crushed stone and sand; the asphalt acts as a glue, binding the mixture together to form asphalt concrete. Maintaining the roads, however, is a costly job. According to the Asphalt Industry Alliance it would cost more than £12bn to restore all road networks in England alone to a reasonable condition. Simon Hesp, a professor and chemical engineer at Queen’s University in Ontario, believes standard industry asphalt is not sustainable. “The problem with the composition is that it’s poorly controlled … it uses materials with poor performances,” he says. Hesp says the presence of certain oil residues lowers the quality of the concrete and is a key reason why roads are failing and many potholes need to be filled and cracks fixed. But there’s not just a maintenance cost. Asphalt, dependent as it is on the oil industry, is resource- and energy-intensive, which is why the race is on to develop a greener alternative. In Sydney an experiment is under way using printer toner waste blended with recycled oil to produce an environmentally friendly asphalt. And in the past few years there have been studies into the development of non-petroleum bioasphalts. At Washington State University researchers developed asphalt from cooking oil, and last year academics at Wageningen University in the Netherlands found that lignin – a natural substance found in plants and trees – is another suitable replacement for crude oil bitumen. Other investigations have looked into the use of soybean and canola oil (rapeseed oil) and coffee grounds. The WSU research, led by Haifang Wen and published at the end of 2013, concluded that the introduction of cooking oil can increase bioasphalt’s resistance to cracking . Wenn also claims it’s possible that, if commercialised, such bioasphalts could cost much less per tonne. The price of standard asphalt can fluctuate wildly as it’s dependent on the price of oil. Hesp isn’t convinced that cooking oil is the way forward. He says, like petroleum, over time it will cause roads to fail because of weak bonds. Bruno Bujoli, director of research at CNRS (Centre National de la Recherche Scientifique), agrees that the use of cooking oil “chemically modified to reach appropriate mechanical properties” could significantly affect quality. He also sounds a note of caution about food security, saying that asphalt based on vegetable oils could, if scaled up, affect food stocks Bujoli recently played a key role in developing a bioasphalt from microalgae. It uses a process known as hydrothermal liquefaction, which is used to convert waste biomass, including wood and sewage, into biocrude oil. The chemical composition of the microalgae bioasphalt differs from petroleum-derived asphalt, but initial tests have concluded that it also bears similar viscous properties and can bind aggregates together efficiently, as well as being able to cope with loads such as vehicles. How it will perform over time is yet to be determined. The findings were published in April. Green roads Bujoli suggests that microalgae – also known for its use in the production of cosmetic and textile dyes – is a greener and more appropriate solution than agricultural oils. The latter, he says, should be kept for food production. “The benefits of microalgae over other sources include low competition for arable land, high per hectare biomass yields and large harvesting turnovers. There is also the opportunity to recycle wastewater and carbon dioxide as a way of contributing to sustainable development,” he adds. It’s a neat idea, with an admirable green mission behind it, but how much of an impact can it really have? Technology such as this is still in its infancy, suggests Heather Dylla, director of sustainable engineering at the National Asphalt Pavement Association, a US trade organisation for the paving industry. “A lot of interesting work is being done in this area, looking at everything from algae, to swine waste, to byproducts from paper making. It’s worth exploring these alternatives, but we need to be sure they provide equivalent or improved engineering properties. We need to understand how they affect the recyclability of asphalt pavement mixtures,” she says. She points to the “unique” advantage of asphalt when it comes to recycling. “Not only are the aggregates, which make up about 95% of [asphalt concrete], put back to use, but the bitumen can also be reactivated and used again as the glue that holds a pavement together.” Microalgae could yet put the paving industry on the road to a greener future. For now though, there are plenty of challenges – from price to scalability – for Bujoli and his team to address if the bioasphalt is to be commercialised. “This is our research focus for the near future. Our current laboratory equipment works in a batch mode,” explains Bujoli. “Scaling up the process will require the design of a large-volume reactor that can operate under continuous flow conditions.” Read more at: http://www.theguardian.com/sustainable-business/2015/jun/08/from-oil-to-algae-eco-friendly-asphalt-could-be-the-route-to-greener-roads

Bioluminescence: Study uses algal cells to ‘shed light’ on sensing mechanical forces

Posted by Algix in Short Posts | 0 comments

15.05.15

Algae are known to congregate and bloom in massive numbers, covering patches of the ocean in thick red and brown blotches. Some of these “red tide” events create dazzling nighttime light shows of blue-green bioluminescence resulting from the force generated by breaking waves. While many mysteries remain on how such red tide blooms emerge, marine biologists are now making progress in decoding the mechanisms that trigger the effect of bioluminescence. Bioluminescense Algae 1 Marine biologist Michael Latz from Scripps Institution of Oceanography at UC San Diego has been studying bioluminescence for more than 30 years and is now zeroing in on the forces that flick the “on” switch for bioluminescencent flashes in single-celled algae known as dinoflagellates. Dinoflagellates employ bioluminescence as a defense mechanism. They use the bright flash to ward off potential predators as well as call attention to the predators of their predators as a type of alarm. Dinoflagellates are equipped with an extremely fast response to stimuli, with bioluminescence produced only 15 milliseconds after stimulation. In a study recently featured on the cover and blog of Biophysical Journal, Latz and former Scripps postdoctoral researcher Benoit Tesson employed a state-of-the-art laboratory instrument called an atomic force microscope to study the force sensitivity of dinoflagellates with unprecedented resolution. They set out to measure the exact forces that trigger light production inside dinoflagellate cells, setting the specifications for the atomic force microscope, in which a calibrated lever was used to apply precisely controlled forces on individual dinoflagellate cells. Such diligence paid off, as the results identified the force conditions that were required to trigger the light. Cells responded to a minimum force of seven micronewtons, which, according to U.S. Navy physicist Jim Rohr, who is familiar with the study, is equivalent to the “weight of an ant resting on your skin.” natureslight_web-Tesson and Latz Bioluminescence             Most interesting, the researchers say, was that if the same level of force was applied slowly, there was no response. The difference was due to the mechanical properties of the cells. According to a model they developed, at low stimulation speed the resulting energy was dissipated while at high speed energy was able to build up. “It is like the difference between pushing and punching; for the same applied force, at high speeds a deformable material acts stiffer and the shock is stronger,” said Tesson. The results will contribute to the use of dinoflagellate bioluminescence as a tool in engineering and oceanography to visualize flows that are difficult to study otherwise. As Leonardo da Vinci used grass seeds to observe water flow more than 500 years ago, scientists today use bioluminescence to naturally “light up” flow forces associated with jet turbulence, breaking waves, and the swimming movements of dolphins. Knowing the precise trigger point of light emission will aid studies in which bioluminescence is used to study flow forces. “Cells are sophicated integrators of the forces in their environment,” said Latz. “With these results we further our understanding of how the structural properties of these organisms affect their force sensitivity, and how force sensing evolved, because the system appears to have conserved elements that are used in force sensing by higher organisms, including humans.” So the next time you see how the red tide sparkles at night, Latz says, you can think of the algae as little force-sensing machines. The U.S. Air Force Office of Scientific Research Multidisciplinary University Research Initiative, National Science Foundation, and UC San Diego Academic Senate funded the research. Use of the atomic force microscope was provided by Scripps Oceanography marine biologist Mark Hildebrand.   Sources: http://news.algaeworld.org/2015/05/the-force-behind-bioluminescence-study-uses-algal-cells-to-shed-light-on-sensing-mechanical-forces/ http://www.cell.com/biophysj/abstract/S0006-3495(15)00169-1  

3D Fuel & ALGIX Celebrate Earth Day by Introducing Revolutionary Algae Based 3D Printer Filament & Joint Venture

Posted by Algix in In the news | 0 comments

22.04.15

3D Fuel Logo 3D Fuel, a manufacturer of 3D printer filament, just announced the launch of its algae based 3D Printer filament through a Joint Venture (JV) with ALGIX, LLC.  ALGIX is a clean technology company that produces sustainable plastic products utilizing algae from aquaculture and water treatment technologies. "Our Joint Venture with ALGIX opens an entirely new realm of possibilities for us and the 3D Printing market. We are producing high quality filaments, exceeding the typical industry standard. With our efforts being focused on environmental friendliness, some of the exciting product lines we will be introducing to the market in the coming months have the ability to completely change how users of 3D Printers view their printing materials and their impact on the environment. We are positioned to become the company that is not only setting the standards of quality for printer filaments but setting the standards in how those materials impact the world we live in." says 3D-Fuel co-founder Matthew Stegall.

ALGIX, which is a leader in producing sustainable bio-plastic composites, is equally excited about its JV partnership with 3D Fuel in producing a more environmentally friendly 3D printer filament.  "We saw 3D Fuel as an emerging leader in this industry who wanted to add a more earth friendly filament to its core product offering, which we are able to provide through our Solaplast algae filament and sustainable business practices," says Michael Van Drunen, C.E.O. of ALGIX. "Both companies commitment to excellence in both manufacturing and research and development was a clear indicator that our Joint Venture would be a huge success. With our core values being very synergistic, we know our customers will see the difference in not just our product offerings, but the principles in our business practices that we bring to the 3D printing market."

3D Fuel recently revealed one of its most innovative products to date, Fuel In a Box™. "We are very excited about our trademarked Fuel in a Box™ product," says Stegall. "We wanted to create a first to market product that helped fuel people's creativity in a convenient and productive way.  There's nothing worse than having to change out filament in the middle of your printing project.  Now you can use a continuous run of filament from a 5 or 20 kg dispensing box."

One of the things that allows 3D Fuel to stand out among its competitors, besides the innovative products it produces, is its manufacturing process.  3D Fuel uses the purest and highest quality raw materials for its filament.  "What sets 3D Fuel apart is our background in custom compounding and years of experience with filled polymers in the plastics industry," says Ashton Zeller, Director of Research and Development. "This experience lends us to a higher degree of filament testing, which in turn delivers unmatched quality to our customers."

Ryan Hunt, CTO of ALGIX states, "3D Fuel is leveraging the vertically integrated manufacturing capabilities of ALGIX including biomass processing, micronization, compounding, filament extrusion and logistics. This allows us to rapidly innovate by taking ideas to end products in a short period of time." While developing innovative products and manufacturing the highest quality filament is 3D Fuel's top priority, it remains poised to become an industry leader and proponent of sustainable products and services that are important to the entire industry.  Recently, 3D Fuel invited GreenDisk and reShootz to become part of this focus using their recycled material line. "Our mission is to create a synergistic group of like-minded and sustainability focused firms called the Green Alliance whose core competencies include biodegradability, recyclability and sustainable business practices," says Stegall.

3D printing technology is still in its infancy stage and is a dynamic market, but 3D Fuel is committed to growing and responding to this dynamic nature of the industry.  "We remain committed to our clients, consumers and to the environment as we grow and expand our business model," says Steve Gall, 3D Fuel Co-Founder.  "We fully understand that things change quickly in this industry and that we need to be responsive to new technologies and products that impact our business.  At the same time we'll continue to manufacture innovative 3D printer fuels and set unprecedented industry standards for quality and excellence."  3D Fuel's manufacturing facility is located in Meridian, Mississippi.

It comes as no surprise that both 3D Fuel and Algix are committed to Life Cycle Thinking in order to produce more with less.  3D Fuel's new 3D Printer filament lines, coupled with its superior manufacturing processes, will provide at home 3D printing enthusiasts, small scale manufacturers, artisans, designers, engineers and educators piece of mind knowing they are purchasing products from a company that is dedicated to producing high quality filament that has been produced by a sustainably-minded company. If you're ready to fuel your creativity with an innovative and earth friendly 3D printing filament, head over to http://www.3dfuel.com and place your pre-order now or call 657-3DFUEL1 (657-333-8351).

  OLYMPUS DIGITAL CAMERA

If you're interested in learning about ALGIX, Solaplast or Life Cycle Thinking and sustainably-focused practices, please visit http://www.algix.com.

Also, check out ALGIX and 3D Fuel on Facebook, Twitter and YouTube.

Please participate in our "Green is my favorite color" video campaign by telling us why sustainability is important to you. You can then post your video on your personal social media accounts and submit your video to green@algix.com. Remember to use #greenismyfavoritecolor #algix #3dfuel

To view this video on YouTube, please visit: https://www.youtube.com/watch?v=_yfBMXw1NpQ

Media Contact: Barbara Gaston Zeller, ALGIX, LLC, 1-877-972-5449, barbara.zeller@algix.com

News distributed by PR Newswire iReach: https://ireach.prnewswire.com

From Plastic Pollution to an Algae Solution

Posted by Algix in Short Posts | 0 comments

07.04.15

The University of Georgia recently reported on research results that estimates the amount of plastic pollution that is generated each year. “Their study, reported in the Feb. 13 edition of the journal Science, found between 4.8 and 12.7 million metric tons of plastic entered the ocean in 2010 from people living within 50 kilometers of the coastline. That year, a total of 275 million metric tons of plastic waste was generated in those 192 coastal countries.” “Eight million metric tons is the equivalent to finding five grocery bags full of plastic on every foot of coastline in the 192 countries we examined.” UGA-infographic-plastic waste "With the mass increase in plastic production, the idea that waste can be contained in a few-acre landfill or dealt with later is no longer viable. That was the mindset before the onslaught of plastic, when most people piled their waste—glass, food scraps, broken pottery—on a corner of their land or burned or buried it. Now, the average American generates about 5 pounds of trash per day with 13 percent of that being plastic." ““We’re being overwhelmed by our waste,” she said. “But our framework allows us to also examine mitigation strategies like improving global solid waste management and reducing plastic in the waste stream. Potential solutions will need to coordinate local and global efforts.”(1) A viable solution: Algix’s Bioplastics from Algae Solaplast, a subsidiary of ALGIX, harnesses the potential of algae to make bio-plastics for the replacement of traditional petroleum-based plastics and for the reduction of biodegradable plastic costs. Our process includes innovations that reduce the environmental impact of plastic use and correct existing impacts from other sources. To our customers,  Solaplast can offer tremendous improvements to Life Cycle Assessments (LCA) and can allow sustainability objectives to be reached. Solaplast’s products will certainly improve a customer’s green image and will also generate buzz around their products, garnering extra recognition within the plastics sector and from their consumers at the register. Most importantly, Solaplast can offer all of these environmental benefits while being cost competitive in the market place. Algix resin 2022 website picture Solaplast’s innovative product solutions revolutionize the polymer space by providing bio-based sustainable products that do not compete with food production and help to reduce negative environmental impact. This allows Solaplast to provide products that positively impacts of traditional bio-plastics (including carbon sequestration, smaller ecological footprints, reduced petroleum dependence, and improved end of life options) without impacting food pricing or food supplies. Solaplast also provides customers a number of application based cost reductions and technical benefits. The potential for Solaplast resin use exists for a number of applications, and here at Solaplast we are always interested in helping our customers meet their sustainability goals through our custom formulating services. Solaplast also offers toll compounding to pioneering companies who would like to leverage our extensive technical background and specially modified extrusion capabilities to make their product innovations come to life.   Resources: 1. http://ugaresearch.uga.edu/research-news/8-million-metric-tones-of-plastic-enter-the-oceans-every-year-study/#sthash.qeeWO3gR.dpuf 2. http://algix.com/  

Highway Algae Cultivation

Posted by Algix in In the news | 0 comments

07.11.14

A highway overpass is the last place most of us would think to install a farm. But algae, that wonderful little ecological miracle, is different. Since it consumes sunlight and CO2 and spits out oxygen, places with high emissions are actually the perfect growing area. Which is why this overpass in Switzerland has its own algae farm.

Built this summer as part of a festival in Genève, the farm is actually fairly simple: It thrives on the emissions of cars that pass below it, augmented by sunlight. A series of pumps and filters regulate the system, and over time, the algae matures into what can be turned into any number of usable products. According to the designers behind it, the Dutch and French design firmCloud Collective, those uses can range from combustable biomass to material for use in cosmetics and other consumer-facing products.

You can read more at:

http://www.fastcoexist.com/3038134/an-algae-farm-designed-to-suck-up-highway-pollution http://gizmodo.com/this-algae-farm-eats-pollution-from-the-highway-below-i-1653234583

Algae Highways